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Abstract— An analytical cum computational technique is proposed using Green's functions for solving
melting or solidification problems. It is suggested that from a computational viewpoint, this prgcedure may
be very attractive for tackling problems involving non-linear boundary conditions, or multi-component

systerms.

The application of the technique is illustrated on two examples, the melting ablation of a slab due to
convective heat transfer and the dissotution-melting of a slab into a binary liquid mixture.

NOMENCLATURE

a2, thermal diffusivity [L?t™1];

Co. C, carbon concentration at the sur-
face and in the bulk respectively,
in weight fraction;

G, Green’s function, defined in equa-
tion (8); G(x, t|¢, 1);

h, heat transfer coefficient
[QL7*T 't~ 1];

hyp, mass transfer coefficient [Lt™!];

k, integers, appearing as indices;

k, thermal conductivity
[QL™'T 1t~ 1];

I half width of the slab [L];

n, N, integers;

$1.8;...Swslopes of the chord connecting
discrete values of X[Lt™!];

X, spatial coordinate [L];

X(t), position of the melt line (solidifi-
cation front) [L];

T, temperature [T];

T T{(x), bulk temperature and initial
temperature distribution respec-
tively;

= In(t),  inelting temperature;

o, B, constants;

AH, latent heat of melting (QM ~1];

p. density [ML™3];
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£, position of instantaneous source ;

T, time of occurrence of in-
stantaneous source;

th corresponding time steps with
t; =0, etc.;

X melting front at t;;

Py, partition point of the original

slab thickness [L].

INTRODUCTION

PROBLEMS involving melting or solidification
occur frequently both in nature and in systems
of technological importance. Ice formation or
thawing represent important environmental
applications, whereas ingot solidification and
scrap melting are significant problems in the
metals processing industry.

The mathematical statement of these moving
boundary problems is readily given in most
instances, but the range of analytical solutions
that may be generated is extremely restricted [1].
In general, one is therefore led to consider
numerical or semi-analytical techniques. While
thefinitedifference approach tomoving boundary
problems may be very straight forward in con-
cept, difficulties are frequently encountered in
actual computation dueto numericalinstabilities.
These difficulties may be overcome by the choice
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of fine grids and small “time steps”—this,
however, may require excessive computer time.

This state of affairs stimulated alternative
approaches, through the use of semi-analytical
techniques. Thus Citron [2] suggested the use
of successive approximations for the melting of
slabsforarbitraryinitial temperaturedistribution
and for an arbitrary heat input.

Boley used an “‘embedding technique™ and the
concept of the fictitious heat flux to obtain short
time and long time solutions for slabs [3] and
cylinders [4].

The use of the integral profile technique for
moving boundary problems was pioneered by
Goodman [5] and has found widespread appli-
cation to a variety of melting and solidification
processes [6, 7].

The techniques described above are attractive
because of their simplicity, but their application
becomes somewhat cumbersome for multi-
component systems or in situations where tran-
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meet this criterion. The description and illustra-
tion of this technique forms the subject matter of
this paper.

While Green’s functions have been used
extensively for tackling a wide range of diffusion
and heat conduction problems [8], their appli-
cation to moving boundaries appears to be a
relatively novel undertaking,

FORMULATION

Let us consider a solid slab, extending from
x = —Ito x =1 of a given initial temperature
distribution; at time = 0, the slab is immersed
in its own melt and we are interested in the
resultant melting or solidification process.

The physical system is sketched in Fig. 1; for
constant physical properties, the conservation
of heat within the solid phase may be readily
expressed by the linear transient heat conduction
equation*

\ o . o*T oT ;
sient diffusion of heat flow equations have to be a’ a2 a T 0, -X(O)<x<X(t) (1)
solved for two adjoining phases. X t

T (1) Zf/ T 1)
I
I
Te (1) '/
Liquid c)o\"’ Liquid
/ T, (1
! Bulk temperature
s
- 00=—X X= X(t) X=0 X=4X(1) X—=00

F1G. 1. Schematic representation of the system.

The work to be reported in this paper forms
part of a project aimed at the study of melting
and solidification in multicomponent systems.
A rational approach to this class of problems
requires a relatively economical computational
technique.

In the following we shall describe an analytical
cum computational procedure, involving the
use of Green’s functions, which is thought to

where X(t) represents the instantaneous position
of the solidification boundary.
The boundary conditions are written as

T=T(x);t=0 @
T=T();x =+ X(©® (3.4

* The problem considered here assumed symmetry about
x = 0; the treatment to be presented may be readily
generalized to cover asymetric systems.
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and

2T 4 BT=fhx = £ X0) (5.6

with

X(t) = latt = 0. 7
Here equation (2) expresses the previously stated
initial condition, equations (3) and (4) state
that the solid is at the melting temperature at
the phase boundary. For one component systems,
to be considered in the first instance, T, is a
constant; however, in multicomponent systems
the melt temperature is composition dependent,
and hence will, in general, be a function of time.
Equations (5) and (6) constitute a general
expression for the conservation of heat at the
moving boundary. Here o and g are constants,
and the function f{t) is related to the movement of
the phase boundary.
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equation (1) for homogeneous boundary con-
ditions in an infinite medium. After some quite
straight forward manipulation, using the proper-
ties of Green’s functions, the general solution of
equations (1}{7) may be written as [9, 10]

-1
Tix,t) = .‘lTiGIFOdf‘*’ L)TGLxmdf
- -Xe¢

0

X() _
o+ [[o1 2%
1

14

1

~T, a_Gjl dr + a2 H:GM
o¢ -X(@ o

66]
T,.—~ dr.
66 X(1)

[

)

Slope S,

N

Xnol XZ

X

F16G. 2. Technique for advancing the interface.

In order to obtain a formal solution to this
problem, let us consider G = G(x, t|£, 1) the
Green’s function, due to a plane source at
x = ¢ and at t = 7. G takes the following form

1
G=-—-— —[(x— 9% aa2(t—1)]
2a\/1r(t —1) exp (8)

and constitutes the fundamental solution of

At this stage equation (9) contains the as yet un-
known X(t) i.e. the instantaneous position of
the solidification front.

While equation (9) could be integrated directly,
such procedure would require inordinately large
amounts of computer time and a further difficulty
would be posed by the singular point at t = ¢
and x = €.
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In order to circumvent these difficulties, the
following general technique has been developed,
which is illustrated in Fig. 2. The actual advance-
ment of the moving phase boundary between
positions is approximated by a chord on the plot
of X vs. t: let us further designate the slopes of
the straight lines connecting X, and X,, by
S,; the slope of the chord connecting X, and
X, by S,, etc.

Thus starting from X, = [, we can find the
position x = X,(t,), by a few iterations on §,,
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exp Tlx- 9l g o 5__ Z TPy _[
exp—l<x—~§)2/4u2tl . \’/"n (Pk Py
=1 Y TPy |erf
Jt ’ Z ) [er 2aJt

The other terms appearing in equation (9) are
also readily integrated, and after some algebra
we obtain the following expression for the
temperature profile

Tx,t) =

= Py

Pk ”"’[ () ("

D A

4(B/Q)

2a./t)

etk ""{E( 7o) ()

e ) [ o) -2 )+ (i)

beog oz em e (€20 - o552 + [5(%5)

NM—‘
||MT

|2 (e ) (e )+ (e -+ Car )]

b A A o]

by requiring, that equation (9) be satisfied at a
position infinitesimally close to the point x =
X ,(t,). Once the position of X,(t,) is found, we
may proceed to subsequent points in a similar
manner.

For each step we may write

X — &
Sk

T= kv+ s k =
The actual integration indicated in equation (9)
is performed by using the technique of “‘reduc-
tion to quadrature.” Thus the first term on the
right hand side of equation (9) is integrated as
follows:
! 1 ! 1

T; —0dé =—— | T{(&)—
—j‘[ l(é)G|r—0 é 2a\/7t _jl (é)\/t

where

A=t — 18 + (x —x)

B = (t — tk)Sk - (x + Xk)

D=t — t)Sc+ Xy — Xi)

F=0—tis)S%

G =t — S

Q = 44%/S,and S = Xk T Xk
Ikv1 — Ik

E(x) represents erf {x).

It is thus seen, that through the use of equation
(12) the advancement of the phase boundary,
and the temperature profiles within the solid
phase are readily obtained by iterations in-
volving only an algebraic procedure. The actual
calculations were performed on the C.D.C. 6400
digital computer of the State University of
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New York at Buffalo, the essential components
of the flow chart for the program are shown in
Fig. 3. The application of the technique for the

Computer fiow chart
Calculate
maximum

- ”h'l Choose time step
melting

Evaluate rate
both sides ]
of equations
{12)

T

Choose X, ,, and
S, starting from
maximum value

Evoluate the
difference of

s

tf difference
is larger than

]

both sides

l

It difference
is less than
permitted value

permiited value

Print out
Xev1o Se

FiG. 3. Block diagram of the computer program.

solution of actual problems, and typical com-
puted results are shown in the subsequent section.

COMPUTED RESULTS

In order to apply the technique to actual
problems, we shall have to specify the constants
o and # and the functions, T,(t) and f(¢).

For single component systems T,,(f) = T, i.e.
a constant throughout the melting or solidi-
fication period.

For systems where the molten phase is
immobile or undergoes regular laminar motion,
the quantity f(¢) is not given explicitly, but rather,
it appears as a coupling between the heat flow
equations in the molten and solid phases. Even
under these conditions, the technique described
above should afford considerable simplification
of the overall computing procedure.

However, in the examples to be presented in
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the following, we shall confine our attention to
systems, where the molten phase is agitated, and
where the convective heat transfer coefficient is
known between the solid surface and the liquid.

Under these conditions f(t) is explicitly
defined in terms of quantities that have appeared
in the preceeding formulation.

Example 1

The melting of a steel slab in contact with agi-
tated molten steel. Let us consider a steel slab,
initially at a uniform temperature, which at
time = 0 is immersed into well agitated, pure
molten iron, at some temperature above its
melting point.

Under these conditions, T,(t) = T, further-
more, symmetry will dictate that the domain
0 € x < I will behave identically with the region
— 1 € x €0, thus only one of these regions will
have to be considered.

For such a system equation (5), expressing the
conservation of heat at the moving boundary
will take the following simple form

0T B dx(t)

ke — WT; — T) = pAH 5 (13)
i€
a =k p=handf(t) = hT; + pAHEj—)%t). (14)

Here k is the thermal conductivity of the solid,
h, is the convective heat transfer coefficient
between the melt and the solid, p is the density,
AH is the latent heat of melting and Ty is the bulk
temperature of the melt.

The following property values were assumed
for the purpose of computation

! =1lin

T, = 70°F

T,, = 2800°F

T = 3000°F

h = 1,000 Btu/h ft*°F and

AH = 110 Btu/lb, a> = 0-018 (in.%/s)
p = 445 Ib/ft?

k = 20 Btu/h ft°F.
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Some computed curves, giving the transient
temperature profiles and the position of the melt
line as a function time are given in Figs. 4 and 5
respectively.
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F1G. 4. Transient temperature profiles in the solid slab,
prior to melting, in Example 1.

It may be shown, that during the premelting
stage, the temperature profiles given in Fig, 4
are very close to the asymptotic behaviour for a
step change in surface temperature to Ty; this
is to be expected for a relatively large value of the
ratio: hl/k.

The position of the melt line, plotted in Fig, 5
appears to be a linear function of time after an
initial time period ; this again is consistent with
the fact, that by that time, all of the slab has
been brought to the melting point so that melting
would proceed at a uniform rate. This may be
readily verified by comparing the numerical
value of the melting rate that may be obtained
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from equation (13) upon setting (8T}dx) = 0,
with that given in Fig 5 for the final stages of
the melting process. These numerical values of

o

/

Time,

76l \
il \

56 1 I ! 1 1 L I ! I 3

[e2] o2 a3 04 05 06 o7 08 09 [Red
{Center) (Surtace}

Position, &, in.

Fia. 5. Plot of the position of the melt line against time in
Example 1.

of |(dX/dt)| are 136 x 1072 in/s and 134
x 107 2in./srespectively, which areindeed in very
good agreement,

Example 2

Melting of a steel slab, immersed in an iron-
carbon melt. Let us consider the melting of a pure
iron slab, immersed in a melt, consisting of
iron and carbon. Let the initial thickness of
the slab be one foot, its carbon content zero, and
its initial temperature 70°F. Finally, let both the
temperature and carbon content of the melt be
time dependent, as sketched in Fig. 6. The
problem is to find the rate of melting of the slab,
as a function of time. Problems of this type arise
in the melting of scrap in basic oxygen steel-
making processes.

This problem is rather more complex than that
discussed in the previous example, because the
melting temperature of the steel slab is no longer
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constant, but will depend on the carbon com-
position at the surface. Thus in general, the
melting rate will depend on both carbon diffusion
(mass transfer) and on heat transfer.

2900f

2800
uw 27c0
®, 2600

2500

2400

L
0 300 600 900 1200

Time, s

F16. 6. The time dependence of temperature and of the
carbon concentration in the bulk of the melt—Example 2.

By reference to the iron carbon phase diagram
[11], let us approximate the effect of carbon
content (at the surface) on the melting tem-
perature by the following linear relationship

T,, = 2800°F — 1'5 x 10°C,  (15)

where C, is the carbon content at the melt-solid
interface in weight fraction. Equation (15) is
valid approximately, within the range 0 < C,
< 004,

The surface concentration, C, in turn will
depend on mass transfer between the melt and
the solid surface.

By establishing a carbon balance at the inter-
face, on making the quasi-steady state approxi-
mation, we have the following expression for C,

o hiCy=Cy)
0 |(dX/dt)| + hp(Cp — Cy)

where hp is the liquid phase mass transfer
coeflicient, and Cy is the weight fraction of

(16)
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carbon in the bulk. In general,

|(dX/dt)| > hp[Cy — C,), therefore equation
(16) may be written as:

_ hpCp _ hpCp
® " hp + |dX/dD)] T hp + [Si]

On combining equations (15) and (17) we have

hpCp
hD + |Sk |

For a fixed value, or known values of h, equation
(18) represents and explicit relationship between
T,,,» Cgand the melting rate, which may be readily
incorporated into equation (12) and then com-
putation proceeds in the usual manner.

Some computed results are shown in Figs. 7
and 8. In addition to the previously given Ty(t)and
Cp(t) functions, the property values chosen for

(17)

T,, = 2800°F — 1'5 x 10* (18)
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Fi1G. 7. Temperature distribution in the solid, after 0-86 s.
Example 2.
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the computation were h = 10000 Btu/h ft> °F
and Ay, = 0-038in. /s. Clearly, hand hj are related
through the analogy between turbulent heat and
mass transfer. The particular, numerical values
chosen are thought to represent typical con-
ditions in the Basic Oxygen Furnace.

Figure 7 shows a plot of the temperature
distribution within the slab, very shortly after
the commencement of the process. It is seen
the surface temperature is very rapidly raised
to the melting point.

3601
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Had carbon diffusion been absent, no melting
would have occurred at all, until T, reached
2800°F, thus in the present case, the lowering
of the melting temperature played a very impor-
tant role in determining the overall rate of the
process.

The non-analytical nature of Ty(t), and Cglf)
made a numerical approach mandatory in this
case, and the use of the technique outlined in
this paper allowed the computation to proceed
with considerable economy.

\2414-8°F
340
3201 Solid ; Liquid
3001 \2395-2°F
280} \
260
2ao]- AN
220 \
zoor “\2366»0*-&'
¥ ieof .
Py 60 \
E a0} :
[
120} \
feor \2355-2°F
8o \
60} .
a0l AN
20}t \
1 i 1 1 1 1 L ) A 1 i
o o5 10 15 20 25 30 356 40 45 50 55 60
Distance from siab center line, in

FiG. 8. Position of the melt line as a function of time for Example 2. Also shown is the
time dependent melting temperature of the solid.

Figure 8 shows the position of the melt line
as a function of time, and the values of the surface
temperature (time dependent melting point,
due to carbon diffusion) are also shown at
certain descrete points. It is seen that the melting
rate is almost uniform due to the compensating
effects of the gradually increasing T, and the
progressively decreasing Cy; this latter. of course,
leads to a progressively increasing melting
temperature for the slab.

DISCUSSION

In the paper a new technique is proposed for
the solution of moving boundary problems in-
volving unsteady state heat conduction (or
diffusion). The solution is sought in the form of
Green’s function and the technique involves
quite straight forward manipulation of Green’s
function, but for the fact that the time dependent
moving boundary appears in the integrals.
The formal integral solution of the problem is
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then further manipulated to obtain an algebraic
expression, in the form of a series summation
for the temperature distribution, in terms of the
as yet unknown position of the moving bound-
ary. The position of the moving boundary is then
determined by an iterative stepwise process, in
course of which the moving boundary is ad-
vanced to new positions, such that the integral
equation is satisfied to within the desired degree
of accuracy.

At this stage it may be worthwhile to compare
this technique with the alternatives that are
available at the present.

The technique described in the paper is helpful
as it can readily accommodate non-analytical
functions, and quite complex boundary con-
ditions—a feature not possessed by many of the
other semi-analytical procedures reported in
the literature.

“Straight” finite difference techniques con-
stitute the other alternative. While finite dif-
ference techniques may be quite flexibie and could
certainly accommodate non-linear boundary
conditions, they would require considerably
more computer time, as constraints posed by
stability would mandate fine grids and conse-
quently very small time steps.

During the pre-melt period (fixed boundary)
the solution described in the paper involves no
iteration, thus the economy achieved over the
finite differencing is quite evident.

Furthermore, the advantages of this technique
are even more pronounced under conditions
of melting, i.e. when the boundary is no longer
fixed. Here the Green’s function solution requires
only the knowledge of the surface temperature,
whereas in the finite difference technique the
temperature has to be evaluated at all the
internal grid points,

ACCURACY OF THE COMPUTED RESULTS

The computational error was estimated by
two techniques.

{a) Equation (12) in itself represents an overall
heat balance, so that the error is readily estimated
by comparing the two sides of equation (12).
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In the computation the time step was so chosen
that the error, with regard to this overall heat
balance, was less than 1-5 per cent. This error
could, of course, be readily reduced further, but
at the expense of additional computer time.

(b) Anerror estimate was also available through
the comparison of the computed temperature
profiles and melting rates with analytical solu-
tions, in the asymptotic regimes.

In the one component system, (Example 1)
runs performed with high values of the “outside”
heat transfer coefficient agreed very well with
analytical solutions calculated for a step change
in the surface temperature. Here the percentage
error was estimated to be of the order of 20
per cent, however, some of the difference may
have been caused by the fact that the analytical
asymptote was not exactly valid.*

It was noted, while discussing Example 1,
that for this particular case and for long times,
the melting rate was almost constant, and
corresponded to the rate at which latent heat
was supplied by convection, ie¢.

dX KT - T,y
dt = pAH
within this region the computed results agreed

with equation (19) within an accuracy of 10
per cent.

(19)

CONCLUDING REMARKS

A new technique, involving Green’s functions,
is proposed for moving boundary problems,
involving the unsteady state transfer of heat or
mass. The technique offer considerable com-
putational economy over convectional finite
difference procedures and appears to be nrore
flexible for accommodating complex boundary
conditions than the semi-analytical methods
available at present,

The use of this procedure has been illustrated

* The region of high heat transfer coefficients, approach-
ing the step change asymptote would have caused some
computational difficulties, if approached via the con-
ventional finite difference techniques; the use of Green’s
functions, as done in the paper, avoided this problem.
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on two particular examples involving the melting
of slabs in one and two component systems; it
is thought however, that the principle usefulness
of the technique will lie in its application to rather
more complex situations.
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SUR L’UTILISATION DES FONCTIONS DE GREEN POUR RESOUDRE DES PROBLEMES
DE FUSION ET DE SOLIDIFICATION

Résumé—Une technique analytique et numérique est proposée qui utilise les fonctions de Green pour
résoudre des problémes de fusion ou de solidification. 11 est montré que d’un point de vue numérique cette
procédure peut étre trés attrayante pour aborder des problémes avec des conditions aux limites non linéaires

ou des systémes & plusieurs composants.

L’application de la technique est illustrée par deux exemples, I'ablation par fusion d’une plague due
4 un transfert thermique par convection et la dissolution-fusion d’une plaque en un mélange liquide binaire.

DIE ANWENDUNG DER GREENSCHEN FUNKTION AUF SCHMELZ- UND
VERFESTIGUNGSPROBLEME

Zusammenfassung — Eine analytische Berechnungsmethode, die sich auf die Greensche Funktion stiitzt,

wird zur Losung von Schmelz- und Verfestigungsproblemen vorgeschlagen. Von der Berechnung her

scheint diese Methode sehr geeignet bei nichtlinearen Randbedingungen oder Vielkomponenten-Systemen.

Die Anwendung der Methode wird an zwei Beispielen gezeigt das Abschmelzen eines Stabes bei konvek -
tivem Wirmeiibergang und die Aufldsung eines Stabes in einer bindren Fliissigkeitsmischung.

OB UCHOJb30BAHUM OVHHKUMUN I'PUHA [Jifd PEHIEHUA 3AJAY
IJIABJIEHUA Y OTBEPJJEBAHUSA

1&“!!0’!‘&1““1—,[13’13 pemeHuA 38134 IUIABJIEHHMA M OTBEPAEeBAHUA I[IPEJJIOMEeHa MeToJuKa

AHANMTHYECKOr0 pacyera ¢ ucnojassoBanneM ¢ysruuit I'puna, yRoGHas VA pelleHnA aagay

¢ HeNMHEWHEIMM IPAHMYHBIME YCHOBMAMM MJIN MHOTOKOMIIOHEHTHHIMM cucTeMamMu. Bosmomk-

HOCTH METORAMKH MILIIOCTPHPORAHE ABYMA mnpuMepamu. (a) aGuAnMA CTepMHA 33 cuer

KOHBEKTHBHOTO TeliooGMeHa U (0) rIaBieHue CTEPHHA, CONPOBOAIAIOINGECH PACTBOPEHNEM
B OMHAPHOI MUAKON! CMeCH.



