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Abstract-An analytical cum computational technique is proposed using Green’s functions for solving 
melting or solidification problems. It is suggested that from a computational viewpoint, this procedure may 
be very attractive for tackling problems involving non-linear boundary conditions, or multi-component 
systems. 

The an&cation of the techniaue is illustrated on two examules. the melting ablation of a slab due to 
11 I 

convective heat transfer and the dissolution-melting of a slab into a binary liquid mixture. 
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NOMENCLATURE 

thermal difisivity [L’t - ‘1; 
carbon concentration at the sur- 
face and in the bulk respectively, 
in weight fraction; 
Green’s function, defined in equa- 
tion (8); G(x, tit, 7); 
heat transfer coefficient 
[QL-‘T-‘t-‘-j; 
mass transfer coefficient [Lt - ‘1; 
integers, appearing as indices; 
thermal conductivity 
[QL-‘T-V’]; 
half width of the slab [L] ; 
integers; 

5. 
7. 

tk, 

xk, 

pk, 

position of instantaneous source; 
time of occurrence of in- 
stantaneous source; 
corresponding time steps with 
t, = 0, etc. ; 

melting front at tk; 

partition point of the original 
slab thickness CL]. 

INTRODUCTION 

Sk, slopes of the chord connecting 
discrete values of X[Lt - ‘1; 
spatial coordinate [L] ; 
position of the melt line (solidifi- 
cation front) CL] ; 
temperature CT] ; 
bulk temperature and initial 
temperature distribution respec- 
tively; 

PROBLEMS involving melting or solidification 
occur frequently both in nature and in systems 
of technological importance. Ice formation or 
thawing represent important environmental 
applications, whereas ingot solidification and 
scrap melting are significant problems in the 
metals processing industry. 

inelting temperature; 
constants ; 
latent heat of melting (QM - ‘1; 
density [ML- “1; 

The mathematical statement of these moving 
boundary problems is readily given in most 
instances, but the range of analytical solutions 
that may be generated is extremely restricted [l]. 
In general, one is therefore led to consider 
numerical or semi-analytical techniques. While 
the finitedifference approach to moving boundary 
problems may be very straight forward in con- 
cept, difficulties are frequently encountered in 
actual computation due to numerical instabilities. 
These difficulties may be overcome by the choice 
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of fine grids and small “time steps”-this, 
however, may require excessive computer time. 

This state of affairs stimulated alternative 
approaches, through the use of semi-analytical 
techniques. Thus Citron [2] suggested the use 
of successive approximations for the melting of 
slabs for arbitrary initial temperaturedistribution 
and for an arbitrary heat input. 

Boley used an “embedding technique” and the 
concept of the fictitious heat flux to obtain short 
time and long time solutions for slabs [3] and 
cylinders [4]. 

The use of the integral profile technique for 
moving boundary problems was pioneered by 
Goodman [5] and has found widespread appli- 
cation to a variety of melting and solidification 
processes [6, 71. 

The techniques described above are attractive 
because of their simplicity, but their application 
becomes somewhat cumbersome for multi- 
component systems or in situations where tran- 
sient diffusion of heat flow equations have to be 
solved for two adjoining phases. 

meet this criterion. The description and illustra- 
tion of this technique forms the subject matter of 
this paper. 

While Green’s functions have been used 
extensively for tackling a wide range of diffusion 
and heat conduction problems [8], their appli- 
cation to moving boundaries appears to be a 
relatively novel undertaking. 

FORMULATION 

Let us consider a solid slab, extending from 
x = -1 to x = 1 of a given initial temperature 
distribution; at time = 0, the slab is immersed 
in its own melt and we are interested in the 
resultant melting or solidification process. 

The physical system is sketched in Fig. 1; for 
constant physical properties, the conservation 
of heat within the solid phase may be readily 
expressed by the linear transient heat conduction 
equation* 

(1) 

r, /fl 

Liquid Liquid 

Bulk temperature 

- 00-x x= -X/t) X-Q x=+x(t) x--a, 

FIG. 1. Schematic representation of the system. 

The work to be reported in this paper forms 
part of a project aimed at the study of melting 
and solidification in multicomponent systems. 
A rational approach to this class of problems 
requires a relatively economical computational 
technique. 

In the following we shall describe an analytical 
cum computational procedure, involving the 
use of Green’s functions, which is thought to 

where X(t) represents the instantaneous position 
of the solidification boundary. 

The boundary conditions are written as 

T= T(x); t = 0 (2) 

T = T,(t); x = f X(t) (3) (4) 

* The problem considered here assumed symmetry about 
x = 0; the treatment to be presented may be readily 
generalized to cover asymetric systems. 
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and 

with 

equation (1) for homogeneous boundary con- 

01;; + /3T = j(t), x = + X(t) 
ditions in an infinite medium. After some quite 

(5), (6) straight forward manipulation, using the proper- 
ties of Green’s functions, the general solution of 
equations (l)-(7) may be written as [9, lo] 

X(t) = I at t = 0. 

Here equation (2) expresses the previously stated 
initial condition, equations (3) and (4) state 
that the solid is at the melting temperature at 
the phase boundary. For one component systems, 
to be considered in the first instance, T, is a 
constant; however, in multicomponent systems 
the melt temperature is composition dependent, 
and hence will, in general, be a function of time. 
Equations (5) and (6) constitute a general 
expression for the conservation of heat at the 
moving boundary. Here LY and p are constants, 
and the functionflt) is related to the movement of 
the phase boundary. 

0 
X(0 

t 

---- Slops s, 
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--_--- -__ 

I 
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X “+I x, x,=c 

X 

FIG. 2. Technique for advancing the interface. 

In order to obtain a formal solution to this 
problem, let us consider G = G(x, ~15, r) the 

At this stage equation (9) contains the as yet un- 
known X(t) i.e. the instantaneous position of 

Green’s function, due to a plane source at the solidification front. 
x = r and at t = z. G takes the following form While equation (9) could be integrated directly, 

GE_ ’ - [(x - 5)2/4u2(1- r)] 
such procedure would require inordinately large 

2aJx(t - 7) exp (8) amounts of computer time and a further difficulty 
would be posed by the singular point at t = z 

and constitutes the fundamental solution of and x = 5. 
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In order to circumvent these difficulties, the 
following general technique has been developed, exp 

-t(X- 0’/4& dl z _r_ kTN 7;(pkj 

which is illustrated in Fig. 2. The actual advance- exp - I(1 - 5)2/4U2~1 
Za Jn ‘= ’ 

f 

k=N 

ment of the moving phase boundary between 

positions is approximated by a chord on the plot Jr 

of X vs. t : let us further designate the slopes of _ erfk Pk+l) ’ (11) 

the straight lines connecting X, and X,, by 1 2aJt S,; the slope of the chord connecting X, and The other terms appearing in equation (9) are 
X, by S,, etc. also readily integrated, and after some algebra 

Thus starting from X, = 1, we can find the we obtain the following expression for the 
position x = X,(t,), by a few iterations on S,, temperature profile 

by requiring, that equation (9) be satisfied at a 
position infinitesimally close to the point x = 

X,(t,). Once the position of X,(t,) is found, we 
may proceed to subsequent points in a similar 
manner. 

For each step we may write 

z = t; $ 
xk - t 
p, k = 1,2.. . n. 

Sk 
(10) 

where 

A = (t - tk)& f (x - xkj 

B = (t - tk)& - (x + xk) 

D = (t - @Sk-$ (&+I - xkj 

F = (t - tk+#k 

G = (t - t&Sk- 

Q = 4a2!Sk and Sk = ” - “+’ 
tk+ I - tk 

E(x) represents erf (x). 
The actual integration indicated in equation (9) 
is performed by using the technique of “reduc- 
tion to quadrature.” Thus the first term on the 

It is thus seen, that through the use of equation 

right hand side of equation (9) is integrated as 
(12) the advancement of the phase boundary, 

follows : 
and the temperature profiles within the solid 
phase are readily obtained by iterations in- 
volving only an algebraic procedure. The actual 
calculations were performed on the C.D.C. 6400 
digital computer of the State University of 
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New York at Buffalo, the essential components 
of the flow chart for the program are shown in 
Fig. 3. The application of the technique for the 

Computer flow chart 

-1 ;hoose time lstep 1 

5;, starting from 

permitted value 

If difference 

is less than 

1 patmit;sd value 1 

FIG. 3. Block diagram of the computer program 

solution of actual problems, and typical com- 
puted results are shown in the subsequent section. 

COMPUTED RESULTS 

In order to apply the technique to actual 
problems, we shall have to specify the constants 
a and fl and the functions, T,(t) andf(t). 

For single component systems T,(t) = T,, i.e. 
a constant throughout the melting or solidi- 
fication period. 

For systems where the molten phase is 
immobile or undergoes regular laminar motion, 
the quantityf(t) is not given explicitly, but rather, 
it appears as a coupling between the heat flow 
equations in the molten and solid phases. Even 
under these conditions, the technique described 
above should afford considerable simpli~cation 
of the overall computing procedure. 

However, in the examples to be presented in 

the following, we shall confine our attention to 
systems, where the molten phase is agitated, and 
where the convective heat transfer coefficient is 
known between the solid surface and the liquid. 

Under these conditions f(t) is explicitly 
defined in terms of quantities that have appeared 
in the preceeding formulation. 

7he ~?~e~ti~ of a steel slab in contact with agi- 
tated molten steel. Let us consider a steel slab, 
initially at a uniform temperature, which at 
time = 0 is immersed into well agitated, pure 
molten iron, at some temperature above its 
melting point. 

Under these conditions, T,(t) = T,, further- 
more, symmetry will dictate that the domain 
0 < x < 1 will behave identically with the region 
- 1 < x < 0, thus only one of these regions will 
have to be considered 

For such a system equation (5) expressing the 
conservation of heat at the moving boundary 
will take the following simple form 

i.e. 

c( = f, b = h, andf(t) = h7” + pAH d$ (14) 

Here k is the thermal conductivity of the solid, 
h, is the convective heat transfer coefficient 
between the melt and the solid, p is the density, 
AH is the latent heat of melting and TB is the bulk 
temperature of the melt. 

The following property values were assumed 
for the purpose of computation 

1 = 1 in. 
T = 70°F 
T, = 2800°F 
TB = 3000°F 
h = 1,000 Btu/h ft*“F and 
AH = 110 Btu/lb, a2 = 0018 (in.2,s) 

P = 445 lb/ft3 
k = 20 Btu/h ft”F. 
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Some computed curves, giving the transient 
temperature profiles and the position of the melt 
line as a function time are given in Figs. 4 and 5 
respectively. 

from equation (13) upon setting (&98x) = 0, 
with that given in Fig. 5 for the final stages of 
the melting process. These numerical values of 

FIG. 4. Transient temperature profiles in the solid slab. 
prior to melting. in Example 1. 

It may be shown, that during the premelting 
stage, the temperature profiles given in Fig. 4 
are very ciose to the asymptotic behaviour for a 
step change in surface temperature to TB; this 
is to be expected for a relatively large value of the 
ratio : M/E. 

The position of the melt line, plotted in Fig. 5 
appears to be a linear function of time after an 
initial time period; this again is consistent with 
the fact, that by that time, all of the slab has 
been brought to the melting point so that melting 
would proceed at a uniform rate. This may be 
readily verified by comparing the numerical 
value of the melting rate that may be obtained 

4 \ 

(Center) 

PoSttlon, x, ,n 

(Surface) 

FIG. 5. Plot of the position of the melt line against time in 
Example I 

of I(dX/dt)( are 1.36 x 10m2 in./s and 1.34 
x lo- 2 in+ respectively, which are indeed in very 
good agreement. 

Example 2 
Melting of a steel slab, immersed in an iron- 

carbon melt. Let us consider the melting of a pure 
iron slab, immersed in a melt, consisting of 
iron and carbon. Let the initial thickness of 
the slab be one foot, its carbon content zero, and 
its initial temperature 70°F. Finally, let both the 
temperature and carbon content of the melt be 
time dependent, as sketched in Fig. 6. The 
problem is to find the rate of melting of the slab, 
as a function of time. Problems of this type arise 
in the melting of scrap in basic oxygen steel- 
making processes. 

This problem is rather more complex than that 
discussed in the previous example, because the 
melting temperature of the steel slab is no Longer 
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constant, but will depend on thk carbon com- carbon in the bulk. In general, 
position at the surface. Thus in general, the 
melting rate will depend on both carbon diffusion 
(mass transfer) and on heat transfer. 

Time, s 

FIG. 6. The time dependence of temperature and of the 
carbon concentration in the bulk of the melt-Example 2. 

By reference to the iron carbon phase diagram 
[ll], let us approximate the effect of carbon 
content (at the surface) on the melting tem- 
perature by the following linear relationship 

IL 
0 

1600 

TmP = 2800°F - 1.5 x 104C, (15) 

where Co is the carbon content at the melt-solid 
interface in weight fraction. Equation (15) is 
valid approximately, within the range 0 < C, 
< 0.04. 

depend on mass transfer between the melt and 
1 

600 

the solid surface. 
By establishing a carbon balance at the inter- 

400 

The surface concentration, C, in turn will 
800 

face, on making the quasi-steady state approxi- 
mation, we have the following expression for Co 

200 

= _ hD(CB - co) c 
(16) ’ I(dX/dt)I + h,(C, - Co) 

where h, is the liquid phase mass transfer 

.-.--.-. / 

I I I I I I 1 

0 I 2 3 4 5 6 

Distance from the slab center line, in. 

- 
coefficient, and CB is the weight fraction of 

FIG. 7. Temperature distribution in the solid, after 0.86 s. 
Example 2. 

c = -_____hDCB h&B 
’ h, + I(dX/dt)I = h, -k I&l’ 

(17) 

On combining equations (15) and (17) we have 

TmP = 2800°F - 1.5 x lo4 hDh$;, 1’ (18) 

For a fixed value, or known values of h, equation 
(18) represents and explicit relationship between 
Tmpr C, and the melting rate, which may be readily 
incorporated into equation (12) and then com- 
putation proceeds in the usual manner. 

Some computed results are shown in Figs. 7 
and 8. In addition to the previously given TB(t) and 
C,(t) functions, the property values chosen for 

2179OF 

,(melting point) 
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the computation were h = 10000 Btu:h ft2 “F Had carbon diffusion been absent, no melting 
and h, = 0.038 in. is. Clearly, hand h, are related would have occurred at all, until TR reached 
through the analogy between turbulent heat and 28OO”F, thus in the present case, the fowering 
mass transfer. The particular, numerical values of the melting temperature played a very impor- 
chosen are thought to represent typical con- tant role in determining the overall rate of the 
ditions in the Basic Oxygen Furnace. process. 

Figure 7 shows a plot of the temperature 
distribution within the slab, very shortly after 
the commencement of the process. It is seen 
the surface temperature is very rapidly raised 
to the melting point. 

The non-analytical nature of TB(t), and C,(t) 
made a numerical approach mandatory in this 
case, and the use of the technique outlined in 
this paper allowed the computation to proceed 
with considerable economy. 

3604 2414.6*F 

340- 
320- Solid 

\. 

x)0- 
\ 

Liquid 

2395,2*F 

260- 260- \ 

240- \ 

220- 

x)0- 
'\, 

2366.O”F 
* 

i60- \ 

- 160- 

; I#- 
\ 

t 

120- \ 

IOO- 

\ 
2355.2OF 

80- 

60- \ 

40- '\ 

2Q- 

I L I I 1 

0 0.5 I.0 I.5 2.0 2.5 3.0 35 40 4.5 5.0 5.5 6.0 

Distance from slab center line, in 

FIG. 8. Position of the melt line as a function of time for Example 2. Also shown is the 
time dependent melting temperature of the solid. 

Figure 8 shows the position of the melt line 
as a function of time, and the values of the surface 
temperature (time dependent melting point, 
due to carbon diffusion) are also shown at 
certain descrete points. It is seen that the melting 
rate is almost uniform due to the compensating 
effects of the gradually increasing Ts and the 
progressively decreasing C,; this latter. of course, 
leads to a progressively increasing melting 
temperature for the slab. 

DISCUSSIOK 

In the paper a new technique is proposed for 
the solution of moving boundary problems in- 
volving unsteady state heat conduction (or 
diffusion). The solution is sought in the form of 
Green’s function and the technique involves 
quite straight forward manipulation of Green’s 
function, but for the fact that the time dependent 
moving boundary appears in the integrals. 
The formal integral solution of the problem is 
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then Further manipulated to obtain an algebraic 
expression, in the form of a series summation 
for the temperature distribution, in terms of the 
as yet unknown position of the moving bound- 
ary. The position of the moving boundary is then 
determined by an iterative stepwise process, in 
course of which the moving boundary is ad- 
vanced to new positions, such that the integral 
equation is satisfied to within the desired degree 
of accuracy. 

At this stage it may be worthwhile to compare 
this technique with the alternatives that are 
availabIe at the present. 

The technique described in the paper is helpful 
as it can readily accommodate non-analytical 
functions, and quite complex boundary con- 
ditions-a feature not possessed by many of the 
other semi-analytical procedures reported in 
the literature. 

“Straight” finite difference techniques con- 
stitute the other alternative. While finite dif- 
ference techniques may bequite flexible andcouid 
certainly accommodate non-linear boundary 
conditions, they would require considerably 
more computer time, as constraints posed by 
stability would mandate line grids and conse- 
quently very small time steps. 

During the pre-melt period (fixed boundary) 
the solution described in the paper involves no 
iteration, thus the economy achieved over the 
finite differencing is quite evident. 

Furthermore, the advantages of this technique 
are even more pronounced under conditions 
of melting, i.e. when the bounda~ is no longer 
fixed Here the Green’s function solution requires 
only the knowledge of the surface temperature, 
whereas in the finite difference technique the 
temperature has to be evaluated at all the 
internal grid points. 

ACCURACY OF THE COMPUTED RESULTS 

The computational error was estimated by 
two techniques. 

(a) Equation (12) in itself represents an overall 
heat balance, so that the error is readily estimated 
by comparing the two sides of equation (12). 

In the computation the time step was so chosen 
that the error, with regard to this overall heat 
balance, was less than 1.5 per cent. This error 
could, of course, be readily reduced further, but 
at the expense of additional computer time. 

(b) An error estimate was also available through 
the comparison of the computed temperature 
profiles and melting rates with analytical solu- 
tions, in the asymptotic regimes. 

In the one component system, (Example 1) 
runs performed with high values of the “outside” 
heat transfer coefficient agreed very well with 
analytical solutions calculated for a step change 
in the surface temperature. Here the percentage 
error was estimated to be of the order of 2.0 
per cent, however, some of the difference may 
have been caused by the fact that the analytical 
asymptote was not exactly valid.* 

It was noted, while discussing Example 1, 
that for this particular case and for long times, 
the melting rate was almost constant, and 
corresponded to the rate at which latent heat 
was supplied by convection, i.e. 

(19) 

within this region the computed results agreed 
with equation (19) within an accuracy of 1.0 
per cent. 

CONCLUDING REMARKS 

A new technique, involving Green’s functions, 
is proposed for moving boundary problems, 
involving the unsteady state transfer of heat or 
mass. The technique offer considerable com- 
putational economy over convectional finite 
difference procedures and appears to be more 
flexible for accommodating complex boundary 
conditions than the semi-analytical methods 
available at present, 

The use of this procedure has been illustrated 

* The region of high heat transfer coefficients, approach- 
ing the step change asymptote would have caused some 
computational difficulties, if approached via the eon- 
ventional finite difference techniques; the use of Green’s 
functions, as done in the paper, avoided this problem. 
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on two particular examples involving the melting 
of slabs in one and two component systems; it 
is thought however, that the principle usefulness 5. 

of the technique will lie in its application to rather 
more complex situations. 

6. 
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SUR L’UTILISATION DES FONCTIONS DE GREEN POUR RESOUDRE DES PROBLtiMES 
DE FUSION ET DE SOLIDIFICATION 

R&urn&-Une technique analytique et numerique est proposee qui utilise les fonctions de Green pour 
resoudre des problemes de fusion ou de sol~di~cation. II est montre que d’un point de vue num~rique cette 
procedure peut &tre trbs attrayante pour aborder des problemes avec des conditions aux hmites non lineaires 
ou des systtmes & plusieurs composants. 

L’apphcation de la technique est illustree par deux exemples, l’ablation par fusion dune plaque due 
B un transfert thermique par convection et la dissolution-fusion d’une plaque en un melange liquide binaire. 

DIE ANWENDUNG DER GREENSCHEN FUNKTION AUF SCHMELZ- UND 
VERFESTIGUNGSPROBLEME 

ZIsammenfassung-Eine analytische Berechnungsmethode. die sich auf die Greensche Funktion sttitzt. 
wird zur Liisung von Schmelz- und Verfestigungsproblemen vorgeschlagen. Von der Berechnung her 
scheint diese Methode sehr geeigne! bei nichtlinearen Randbedingungen oder Vielkomponenten-Systemen. 

Die Anwendung der Methode wird an zwei Beispielen gezeigt das Abschmelxn eines Stabes bei konvek- 
tivem W~rme~bergang und die Auflijsung eines Stabes in einer bin&en Fl~ssigkeitsmischung. 

AMsfoTaqMsr-fina pemeHHH 3anaH nJlaBneHHH k1 OTBepneBaHMR HpofiJIOXeHa MoTOnHKa 
ananmrnnectroro pacsera c ucnoxb30nannehr (Py~~qHti Ppnaa, yxo6HaH nnrt pemeHHH 3anaH 
C HenAHehHbIMH rpaHH=tHbIMM yCJtORHRMA BJIH MHOrOKOMnOHeHTHblMA CHCTeMaMH. EOSMOH(- 
HOCTH MeTOAHKH HJtJHOCTpMpOBaHbl AByMR npklMepaMH. (a) a6nnHHH CTepXHR 38 CHeT 
HOHBeKTHBHOrO TennOO6MeHa A (6) HJtaBneHHe CTePX(HR,COnpOBamAaHllyeeCR PaCTBOpeHEleM 

H 6HHapHOH H-XIAHOH CMeCH. 


